Respuesta :

Answer:

[tex]6\pi u^3 = 18.8u^3[/tex]

Step-by-step explanation:

the information we have is:

  • the radius of the circle in the base: [tex]r=3u[/tex] (u for units)
  • and the height of the cone: [tex]h=2u[/tex]

to find the volume we need the formula for the volume of a cone:

[tex]V=\frac{\pi r^2h}{3}[/tex]

where r is the radius and h is the height.

Substituting the known values to find the volume:

[tex]V=\frac{\pi (3u)^2(2u)}{3} \\\\V=\frac{\pi (9u^2)(2u)}{3}\\ \\V=\frac{18\pi u^3}{3}\\ \\V=6\pi u^3[/tex]

the volume in terms of [tex]\pi[/tex] is [tex]6\pi u^3[/tex]

and if we substitute the value of pi: [tex]\pi=3.14[/tex] we get:

[tex]V=6(3.14)u^3\\V=18.8u^3[/tex]

Answer:

v = 6π units³                 or        V ≈18.84 units³

Step-by-step explanation:

To find the volume of the cone, we will follow the steps below;

first, write down the formula for finding the volume of a cone;

V = π r² h/3

where r is the radius  and h is the height of the cone and v is the volume of the cone

From the diagram given, height of the cone is 2  and  radius is 3

We can now proceed to insert our values into the formula;

V = π r² h/3

Finding the volume in terms of pi

V = π r² h/3

V = π ×3² ×2/3

one of the 3  at the numerator will cancel out 3 at the denominator in the right-hand side of the equation

v =π×3×2

v = 6π units³

putting  π = 3.14

V = 6 (3.14)

V ≈18.84 units³