Respuesta :
Answer:
The center is at (0,0)
The vertices are at ( ( ±2 sqrt(2),0)
foci are ( ±sqrt(5),0)
Step-by-step explanation:
3x^2 + 8y^2 = 24
Divide each side by 24
3x^2 /24 + 8y^2/24 = 24/24
x^2/8 + y^2 /3 = 1
The general equation of an ellipse is
(x-h)^2/ a^2 + (y-k)^2 / b^2 = 1
a>b (h,k) is the center
the coordinates of the vertices are ( ±a,0)
the coordinates of the foci are ( ±c,0), where ^c2=a^2−b^ 2
The center is at (0,0)
a = sqrt(8) = 2sqrt(2)
The vertices are at ( ( ±2 sqrt(2),0)
c = 8 - 3 =5
foci are ( ±sqrt(5),0)
Answer:
Centre: (0,0)
Vertices: (2sqrt(2) , 0) (-2sqrt(2) , 0)
Co-vertices: (0, sqrt(3)) (0, -sqrt(3))
Foci: (sqrt(5), 0) (-sqrt(5) , 0)
Step-by-step explanation:
(x - h)²/a² + (y - k)²/b² = 1
3x²/24 + 8y²/24 = 1
x²/8 + y²/3 = 1
Centre: (0,0)
Vertices:
y² = 3
y = +/- sqrt(3)
(0, sqrt(3))
(0, -sqrt(3))
x² = 8
x = +/- sqrt(8) = +/- 2sqrt(2)
(2sqrt(2) , 0)
(-2sqrt(2) , 0)
Foci: (c , 0)
c² = a² - b²
c² = 8 - 3 = 5
c = +/- sqrt(5)