Respuesta :

Given:

Given that the area of the rectangle is [tex]2.48 \times 10^{12} \ cm^2[/tex]

The length of the rectangle is [tex]6.2 \times 10^6 \ cm[/tex]

We need to determine the perimeter of the rectangle.

Width of the rectangle:

The width of the rectangle can be determined using the formula,

[tex]Area = length \times width[/tex]

Substituting the values, we have;

[tex]2.48 \times 10^{12}=6.2 \times 10^6 \times width[/tex]

Dividing both sides of the equation by [tex]6.2 \times 10^4[/tex], we get;

[tex]0.4 \times 10^6=width[/tex]

Thus, the width of the rectangle is [tex]0.4 \times 10^6 \ cm[/tex]

Perimeter of the rectangle:

The perimeter of the rectangle can be determined using the formula,

[tex]P=2(l+w)[/tex]

Substituting the values, we get;

[tex]P=2[(6.2 \times 10^6)+(0.4 \times 10^6)][/tex]

[tex]P=2(6.6 \times 10^6)[/tex]

[tex]P=13.2 \times 10^6 \ cm[/tex]

Thus, the perimeter of the rectangle is [tex]13.2 \times 10^6 \ cm[/tex]