Respuesta :

Answer:

tan A = - [tex]\frac{4}{3}[/tex]

Step-by-step explanation:

Using the identity sin² A + cos² A = 1, then

([tex]\frac{4}{5}[/tex] )² + cos² A = 1

[tex]\frac{16}{25}[/tex] + cos² A = 1 ( subtract [tex]\frac{16}{25}[/tex] from both sides )

cos² A = [tex]\frac{9}{25}[/tex] ( take the square root of both sides )

cos A = ± [tex]\sqrt{\frac{9}{25} }[/tex] and given cosA < 0, then

cos A = - [tex]\frac{3}{5}[/tex]

Using the identity

tan A = [tex]\frac{sinA}{cosA}[/tex], then

tan A = [tex]\frac{\frac{4}{5} }{-\frac{3}{5} }[/tex] = [tex]\frac{4}{5}[/tex] × - [tex]\frac{5}{3}[/tex] = - [tex]\frac{4}{3}[/tex]