What is the equation of the line of best fit for the following data? Round the
slope and y-intercept of the line to three decimal places.
A. y = 0.894x + 0.535
B. y = -0.894x + 0.535
c. y=0.535x+0.894
D. y= -0.535x + 0.894

What is the equation of the line of best fit for the following data Round the slope and yintercept of the line to three decimal places A y 0894x 0535 B y 0894x class=

Respuesta :

Answer:

[tex]S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}=438-\frac{44^2}{5}=50.8[/tex]

[tex]S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n}=415-\frac{44*42}{5}=45.4[/tex]

And the slope would be:

[tex]m=\frac{45.4}{50.8}=0.8937 \approx 0.894[/tex]

Now we can find the means for x and y like this:

[tex]\bar x= \frac{\sum x_i}{n}=\frac{44}{5}=8.8[/tex]

[tex]\bar y= \frac{\sum y_i}{n}=\frac{42}{5}=8.4[/tex]

And we can find the intercept using this:

[tex]b=\bar y -m \bar x=8.4-(0.894*8.8)=0.535[/tex]

So the line would be given by:

[tex]y=0.894 x +0.535[/tex]

And the best option is:

A. y = 0.894x + 0.535

Step-by-step explanation:

We have the following dataset given

x: 5,6,9,10,14

y: 4,6,9,11,12

We want to find the least-squares line appropriate for this data given by this general expresion:

[tex] y = mx +b[/tex]

Where m is the slope and b the intercept

For this case we need to calculate the slope with the following formula:

[tex]m=\frac{S_{xy}}{S_{xx}}[/tex]

Where:

[tex]S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n}[/tex]

[tex]S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}[/tex]

So we can find the sums like this:

[tex]\sum_{i=1}^n x_i = 44[/tex]

[tex]\sum_{i=1}^n y_i =42[/tex]

[tex]\sum_{i=1}^n x^2_i =438[/tex]

[tex]\sum_{i=1}^n y^2_i =398[/tex]

[tex]\sum_{i=1}^n x_i y_i =415[/tex]

With these we can find the sums:

[tex]S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}=438-\frac{44^2}{5}=50.8[/tex]

[tex]S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n}=415-\frac{44*42}{5}=45.4[/tex]

And the slope would be:

[tex]m=\frac{45.4}{50.8}=0.8937 \approx 0.894[/tex]

Nowe we can find the means for x and y like this:

[tex]\bar x= \frac{\sum x_i}{n}=\frac{44}{5}=8.8[/tex]

[tex]\bar y= \frac{\sum y_i}{n}=\frac{42}{5}=8.4[/tex]

And we can find the intercept using this:

[tex]b=\bar y -m \bar x=8.4-(0.894*8.8)=0.535[/tex]

So the line would be given by:

[tex]y=0.894 x +0.535[/tex]

And the best option is:

A. y = 0.894x + 0.535

Answer: A

Step-by-step explanation: