Respuesta :

Answer:

tan2A = [tex]\frac{5}{12}[/tex]

Step-by-step explanation:

Using the trigonometric identity

tan2A = [tex]\frac{2tanA}{1-tan^2A}[/tex], thus

tan2A = [tex]\frac{2(\frac{1}{5}) }{1-(\frac{1}{5})^2 }[/tex]

          = [tex]\frac{\frac{2}{5} }{1-\frac{1}{25} }[/tex]

         = [tex]\frac{\frac{2}{5} }{\frac{24}{25} }[/tex]

         = [tex]\frac{2}{5}[/tex] × [tex]\frac{25}{24}[/tex] = [tex]\frac{5}{12}[/tex]