Answer:
[22.7, 26.3]
Step-by-step explanation:
-Given that n=40, mean=24.5 and the standard deviation is 5.8.
-The 95% confidence interval can be calculated as follows:
[tex]CI=\mu\pm z_{\alpha/2}\frac{\sigma}{\sqrt{n}}[/tex]
#Substitute the given values to solve for CI:
[tex]CI=\mu\pm z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\\\\\\=24.5\pm1.96\times \frac{5.8}{\sqrt{40}}\\\\\\=24.5\pm 1.8\\\\=[22.7,\ \ \ 26.3][/tex]
Hence, the confidence interval is [22.7, 26.3]