Respuesta :
Answer:
Step-by-step explanation:
Given that,
The arc length is four times the radius
Let he radius be 'r'
Then, the arc length be 's'
The arc of a sector can be calculated using
s=θ/360 × 2πr
Then, given that s=4r
So, 4r = θ × 2πr / 360
Divide both side r
4 = θ × 2π/360
Then, make θ subject of formula
θ × 2π = 360 × 4
θ = 360 × 4 / 2π
θ = 720 / π
So, area of the sector can be determine using
A = θ / 360 × πr²
Since r = ¼s
Then,
A = (θ/360) × π × (¼s)²
A = (θ/360) × π × (s²/16)
A = θ × π × s² / 360 × 16
Since θ = 720 / π
A = (720/π) × π × s² / 360 × 16
A = 720 × π × s² / 360 × 16 × π
A = s² / 8
Then,
s² = 8A
Then,
s= √(8A)
s = 2 √2•A
The function of the area of the sector is s = 2 √2•A
How to calculate the area of a sector
According to the question, the arc length is four times the radius
Let the radius be 'r'
Let the arc length be 's'
The arc of a sector can be calculated using
s = θ/360 × 2πr
From the given statament, s=4r
Substitute into the formula to have:
4r = θ × 2πr / 360
Divide both sides r
4 = θ × 2π/360
Then, make θ subject of formula
θ × 2π = 360 × 4
θ = 360 × 4 / 2π
θ = 720 / π
Calculate the area of the sector using the formula;
A = θ / 360 × πr²
Since r = ¼s
Then,
A = (θ/360) × π × (¼s)²
A = (θ/360) × π × (s²/16)
A = θ × π × s² / 360 × 16
Since θ = 720 / π
A = (720/π) × π × s² / 360 × 16
A = 720 × π × s² / 360 × 16 × π
A = s² / 8
s² = 8A
s= √(8A)
s = 2 √2•A
Hence the function of the area of the sector is s = 2 √2•A
Learn more on area of sector here: https://brainly.com/question/22972014