Respuesta :

Answer:

2 (2 x + 5)^2

Step-by-step explanation:

Factor the following:

8 x^2 + 40 x + 50

Hint: | Factor out the greatest common divisor of the coefficients of 8 x^2 + 40 x + 50.

Factor 2 out of 8 x^2 + 40 x + 50:

2 (4 x^2 + 20 x + 25)

Hint: | Factor 4 x^2 + 20 x + 25 by finding factors of 4×25 whose sum is 20.

Factor the quadratic 4 x^2 + 20 x + 25. The coefficient of x^2 is 4 and the constant term is 25. The product of 4 and 25 is 100. The factors of 100 which sum to 20 are 10 and 10. So 4 x^2 + 20 x + 25 = 4 x^2 + 10 x + 10 x + 25 = 5 (2 x + 5) + 2 x (2 x + 5):

2 5 (2 x + 5) + 2 x (2 x + 5)

Hint: | Factor common terms from 5 (2 x + 5) + 2 x (2 x + 5).

Factor 2 x + 5 from 5 (2 x + 5) + 2 x (2 x + 5):

2 (2 x + 5) (2 x + 5)

Hint: | Combine products of like terms.

(2 x + 5) (2 x + 5) = (2 x + 5)^2:

Answer:  2 (2 x + 5)^2

Answer:

106

Step-by-step explanation:

8 into 2=16    16 +40=56   56into+50=106