Respuesta :
Answer:
5789 digits
Step-by-step explanation:
Given that the number of pages ares: 1,724
As we know that:
- (from 1 - 9) there are 9 one-digit numbers
- (from 10- 99) there are 90 two-digit numbers
- (from 100 - 999) there are 900 three-digit numbers
- (from 1,000 - 1,724) there are 725 four-digit numbers
So the total are:
[tex]= 9(1)+90(2)+900(3)+725(4)\\\\= 9+180+2,700+2,900\\\\= 5,789\ digits[/tex]
Answer:
5,789 digits
Step-by-step explanation:
1 digit numbering from page 1-9
That is 9 pages×1 digit=9 digits
2 digit numbering from page 10 to 99
That is 90 pages × 2 digits=180 digits
3 digit numbering from page 100 to 999
That is 900 pages× 3 digits=2,700 digits
4 digits numbering from page 1000 to 1,724
That is 725 pages × 4 digits
=2,900 digits
Total digits=9 digits+ 180 digits+2,700 digits+2,900 digits
=5,789 digits