Evaluate fraction numerator d over denominator d x end fraction open parentheses integral subscript 3 superscript x s e c (t )space tan (t )space d t close parentheses sec(x)tan(x) sec(x)tan(x) + C sec(x) - sec(3) sec(x)

Respuesta :

Answer:

  sec(x)tan(x)

Step-by-step explanation:

This is a direct application of the fundamental theorem of calculus, which tells you ...

  [tex]\displaystyle\frac{d}{dx}\int^x_a {f(t)} \, dt=f(x)[/tex]

Here, f(t) = sec(t)tan(t) and a=3. So, the derivative is ...

  f(x) = sec(x)tan(x)