The base of a solid SSS is the region bounded by the ellipse 4x^2+9y^2=364x 2 +9y 2 =364, x, squared, plus, 9, y, squared, equals, 36. Cross-sections perpendicular to the yyy-axis are equilateral triangles. Determine the exact volume of solid SSS.

Respuesta :

Answer:

4Ï€

Step-by-step explanation:

4x² + 9y² = 36

Divide all  through by 9

4/9x² + ²y² = 44

[tex]\int\limits^3_0 {\pi y^{2} } \, dx[/tex]

[tex]\int\limits^3_0 {4-\frac{4}{9} }x^{2} \, dx[/tex]

The volume of solid is [tex]8\pi[/tex] unit cube.

To understand more, check below explanation.

Volume of solid:

The eqaution of ellipse is given as,

                       [tex]4x^{2} +9y^{2}=36[/tex]

Divide both side by 9.

We get,   [tex]\frac{4}{9}x^{2} +y^{2} =4[/tex]

              [tex]y^{2}=4-\frac{4}{9}x^{2}[/tex]

The volume of solid is computed as,

                     [tex]Volume=\int\limits^a_b {\pi y^{2} } \, dx \\\\Volume=\int\limits^3_0 {\pi (4-\frac{4}{9}x^{2} ) } \, dx\\\\Volume=\pi (4x-\frac{4}{9}\frac{x^{3} }{3} )_{0}^{3}\\\\Volume=\pi(12-4)\\\\Volume=8\pi[/tex]

Hence, the volume of solid is [tex]8\pi[/tex] unit cube.

Learn more about the volume of solid here:

https://brainly.com/question/9076728