What is the value of the equilibrium constant at 25 oC for the reaction between the pair: Fe(s) and Cr3 (aq) to give Cr(s) and Fe2 (aq). Give your answer using E-notation with NO decimal places (e.g., 2 x 10-2 would be 2E-2; and 2.12 x 10-2 would also be 2E-2.). Do NOT include spaces, units, punctuation or anything else silly! Use the reduction potentials for Cr3 (aq) is -0.74 V and for Fe2 (aq) is -0.440 V. [a]

Respuesta :

Answer:

The equilibrium constant is [tex]K = 3.565*10^{-31}[/tex]

Explanation:

   From the question we are told that

        The reduction potential of [tex]Cr^{3-}[/tex] = [tex]-0.74V[/tex]

        The reduction potential of  [tex]Fe^{2+}[/tex] = [tex]-0.0440[/tex]        

      In order for us to obtain the equilibrium constant we need to understand the process of the reaction

   At the cathode [tex]Cr^{3-}[/tex] is reduced to Cr the reaction is  

              [tex]2Cr^{3-} + 6e^ - ------> 2Cr[/tex]

   At the anode [tex]Fe[/tex] is oxidized to [tex]Fe^{2+}[/tex] the reaction is

             [tex]3Fe -----> 3Fe^{2+} + 6e^-[/tex]

The net voltage of the cell is mathematically given as

           [tex]E_{cell} = E_{cathode} - E_{anode}[/tex]

  substituting value

           [tex]E_{cell} = -0.74 - (-0.440)[/tex]

                   [tex]= -0.30V[/tex]

Next we need to mathematically evaluate the  free energy of the cell as

      [tex]\Delta G = -n_e F E_{cell}[/tex]

where [tex]n_e[/tex] is the number of moles of  electron which is  6

           F is the farad constant with a value  [tex]F = 96,500 C/mole[/tex]

Substituting values

       [tex]\Delta G = - ( 6 * 96500 *-0.3)[/tex]

             [tex]= 17,3700 J/mol[/tex]

The equilibrium constant is mathematically represented as

       [tex]K = e ^{\frac{\Delta G}{-(RT)} }[/tex]

Where R is the gas constant with value  8.314 J/mol

            T is the temperature with a given value of  [tex]T =298K[/tex]

Substituting values

          [tex]K = e ^{\frac{173700}{- (8.314 * 298)} }[/tex]

              [tex]K = 3.565*10^{-31}[/tex]