Two masses of 24 kg and 12 kg are suspended by a pulley that has a radius of 6.2 cm and a mass of 5 kg. The cord has a negligible mass and causes the pulley to rotate without slipping. The pulley rotates without friction. The masses start from rest 4.1 m apart. 4.1 m 6.2 cm 5 kg ω 24 kg 12 kg Determine the speeds of the two masses as they pass each other. Treat the pulley as a uniform disk. The acceleration of gravity is 9.8 m/s 2 . Answer in units of m/s.

Respuesta :

Answer:

[tex]v_i =0[/tex] since the mass start at rest

[tex]v_f = 3.54 \ m/s[/tex]

Explanation:

Given that :

Two masses of 24 kg and 12 kg are suspended by a pulley

so; let [tex]m_1[/tex] = 24 kg and [tex]m_2[/tex] = 12 kg

radius r = 6.2 cm

mass M = 5.0 kg

The moment of inertia on the pulley is ;

[tex]I = \frac{1}{2}Mr^2[/tex]

For the force equation with mass m ; we have:

[tex]m_1g -T_1 = m_1a[/tex]

[tex]T_1 =m_1g-m_1a[/tex] -------- Equation (1)

Force equation of the mass [tex]m_2[/tex]  can be written as:

[tex]T_2 -m_2g = m_2a[/tex]

[tex]T_2 = m_2a+m_2g[/tex]     -------- Equation (2)

The torque on the pulley is expressed as:

[tex](T_1-T_2) r = I \alpha[/tex]

where [tex]a= r* \alpha[/tex]

Then;

[tex](T_1-T_2) r =\frac{1}{2}Mr^2 \frac{a}{r}[/tex]

[tex]T_1 -T_2 = \frac {Ma}{2}[/tex] ----- Equation (3)

Replacing equation (1) and (2)  into equation (3) ; we have:

[tex](m_1g -m_1a) -(m_2g + m_2a) = \frac{Ma}{2}[/tex]

[tex](24*9.8 -24a) -(12*9.8 + 12a) = \frac{5a}{2}[/tex]

[tex]235.2 - 24a - 117.6-12a = \frac{5a}{2}[/tex]

[tex]117.6 - 36a= \frac{5a}{2}[/tex]

[tex]2(117.6-36a)= \frac{5a}{2}[/tex]

235.2 - 72a  = 5a

235.2 = 5a + 72a

235.2 = 77a

a = [tex]\frac{235.2}{77}[/tex]

a= 3.05 m/s²

Let's consider the mass [tex]m_1[/tex] of the motion, with initial velocity

[tex]v_i =0[/tex] since the mass start at rest

distance traveled (s) = 2.05 m

acceleration = 3.05 m/s²

Using the formula:

[tex]v_f^2 = v_i^2 + 2 as \\ \\ v_f^2 =0^2+2(3.05)*2.05 \\ \\ v_f^2 = 12.505 \\ \\ v^2_f = \sqrt{12.505} \\ \\ v_f = 3.54 \ m/s[/tex]