The model for radioactive decay is y=y0e−kt. A radioactive substance has a half-life of 200 years. If 45 grams are present today, in how many years will 25 grams be present? While solving this problem, round the value of k to seven decimal places. Round your answer to two decimal places.

Respuesta :

Answer:

Therefore 25 grams will be present in 135.62 years.

Step-by-step explanation:

The model for radioactive decay is

[tex]y=y_0e^{-kt}[/tex]

y=remaining amount of radioactive element.

[tex]y_0[/tex] = initial amount of radioactive element

Given that, the half life of the radioactive element is 200 years.

For half life, [tex]y=\frac{1}{2}y_0[/tex], t=200 years

[tex]y=y_0e^{-kt}[/tex]

[tex]\Rightarrow \frac12 y_0=y_0e^{-k.200}[/tex]

[tex]\Rightarrow \frac12 =e^{-k.200}[/tex]

Taking ln both sides

[tex]\Rightarrow ln|\frac12 |=ln|e^{-k.200}|[/tex]

[tex]\Rightarrow ln|\frac12 |={-k.200}[/tex]

[tex]\Rightarrow -200k=ln|\frac12|[/tex]

[tex]\Rightarrow k=\frac{ln|\frac12|}{-200}[/tex]

⇒ k= 0.0034657

Given that,

y= 25 gram, y₀= 45 grams

[tex]25=40e^{-0.0034657t}[/tex]

[tex]\Rightarrow \frac{25}{40}=e^{-0.0034657t}[/tex]

Taking ln both sides

[tex]\Rightarrow ln|\frac{25}{40}|=ln|e^{-0.0034657t}|[/tex]

[tex]\Rightarrow ln|\frac{25}{40}|={-0.0034657t}[/tex]

[tex]\Rightarrow t=\frac{ln|\frac{25}{40}|}{-0.0034657}[/tex]

⇒ t= 135.62 years.

Therefore 25 grams will be present in 135.62 years.