Answer:
[tex]m_{steel}=54.47gSteel[/tex]
Explanation:
Hello,
In this case, one considers that the heat lost by the water is gained by the steel rod:
[tex]\Delta H_{water}=-\Delta H_{steel}[/tex]
That in terms of masses, heat capacities and temperatures is:
[tex]m_{water}Cp_{water}(T_F-T_{water})=-m_{steel}Cp_{steel}(T_F-T_{steel})[/tex]
Thus, solving for the mass of the steel rod, we obtain:
[tex]m_{steel}=\frac{m_{water}Cp_{water}(T_F-T_{water})}{-Cp_{steel}(T_F-T_{steel})} \\\\m_{steel}=\frac{125mL*\frac{1g}{1mL}*4.18\frac{J}{g^oC} (22.00^oC-21.10^oC)}{-0.452\frac{J}{g^oC}*(2.00^oC-21.10^oC)} \\\\m_{steel}=54.47gSteel[/tex]
Best regards.