Respuesta :

Answer:

[tex]\sum _{n=1}^{10}8\left(\frac{1}{4}\right)^{n-1}\approx 10.67[/tex]

Step-by-step explanation:

A geometric sequence has a constant ratio  [tex]r[/tex]  and is defined by  [tex]a_n=a_0\cdot r^{n-1}[/tex]

Check whether the ratio is constant by computing the ratios of all the adjacent terms, i.e. [tex]r=\frac{a_{n+1}}{a_n}[/tex]

[tex]\frac{8\left(\frac{1}{4}\right)^{\left(n+1\right)-1}}{8\left(\frac{1}{4}\right)^{n-1}}=\frac{1}{4}[/tex]

The ratio of all the adjacent terms is same and equal to [tex]r=\frac{1}{4}[/tex]

Geometric sequence sum formula:  [tex]a_1\frac{1-r^n}{1-r}[/tex]

[tex]n=10,\:\space a_1=8,\:\spacer=\frac{1}{4}[/tex]

[tex]=8\cdot \frac{1-\left(\frac{1}{4}\right)^{10}}{1-\frac{1}{4}}\\\\=\frac{349525}{32768}\\\\\approx 10.67[/tex]

I think the answer is 10.7