Respuesta :
Answer:
[tex]F(3)=\frac{9}{2} \\F(-12)=\frac{-1}{2} \\F(\frac{1}{3} )=\frac{73}{2} \\F(\frac{3}{4} )=\frac{33}{2}[/tex]
Step-by-step explanation:
Given: [tex]F(x)= \frac{12}{x} + \frac{1}{2}[/tex]
To find: Values of the function F(3) , F(−12) , [tex]F(\frac{1}{3})[/tex], [tex]F(\frac{3}{4})[/tex]
Solution:
A function is a relation in which each and every element of the domain has a unique image in the co-domain.
To find the values of the functions [tex]F(3),F(-12),F(\frac{1}{3} ),F(\frac{3}{4} )[/tex], put [tex]x=3, -12, \frac{1}{3},\frac{3}{4}[/tex] in the given function [tex]F(x)= \frac{12}{x} + \frac{1}{2}[/tex]
[tex]F(x)= \frac{12}{x} + \frac{1}{2}\\F(3)= \frac{12}{3} + \frac{1}{2}\\=4 + \frac{1}{2}\\=\frac{9}{2}[/tex]
[tex]F(x)= \frac{12}{x} + \frac{1}{2}\\F(-12)= \frac{12}{-12} + \frac{1}{2}\\=-1+\frac{1}{2}\\ =\frac{-1}{2}[/tex]
[tex]F(x)= \frac{12}{x} + \frac{1}{2}\\\\F(\frac{1}{3} )= \frac{12}{\frac{1}{3}} + \frac{1}{2}\\=36+\frac{1}{2}\\ =\frac{73}{2}[/tex]
[tex]F(x)= \frac{12}{x} + \frac{1}{2}\\\\\\F(\frac{3}{4} )= \frac{12}{\frac{3}{4}} + \frac{1}{2}\\\\=16+\frac{1}{2}\\ \\=\frac{33}{2}[/tex]
Answer:
Step-by-step explanation:
Substitute in each value for x: F(x) becomes F(3)=12/3+1/2=2