Respuesta :

Answer:

sin theta=0.75 degree, tan theta=1.12 degrees

Step-by-step explanation:

cos theta=2/3

cos theta=cah= Adjacent/hypotenus

so, adjacent=2, hypotenus=3, opposite=?

using Pythagoras theorem

hypotenus(squared)=opposite(squared)+adjacent(squared)

3(squared)=opp(squared)+2(squared)

9=opp(squared)+4

collect like terms

9-4=opp(squared)

opp(squared)=5

root both sides

opp=root of 5

opp=2.24

to find sin theta

sin theta=soh=opposite/hypotenuse

sin theta=2.24/3

sin theta=0.75 degrees

to find tan theta

tan theta=toa= opposite/adjacent

tan theta=2.24/2

tan theta=1.12 degrees

The values of sin θ and tan θ from the given value of cos θ are; sin θ = (√5)/3 and tan θ = (√5)/2

How to write Trigonometric ratios?

We are told that;

cos θ = 2/3

Now, from trigonometric ratios, we know that;

cos θ = adj/hyp

sin θ = opp/hyp

tan θ = sin θ/cos θ

From right angled triangle;

opp = √(3² - 2²)

opp = √5

Thus;

sin θ = (√5)/3

tan θ =  ((√5)/3)/(2/3)

tan θ = (√5)/2

Read more about Trigonometric Ratios at; https://brainly.com/question/11967894