In the diagram CD is tangent to circle B at point C. If AB = 5 cm, and BD = 13 cm, find AD. Round the answer to the nearest tenth.

Answer:
[tex]AD \approx 15.6\,cm[/tex]
Step-by-step explanation:
The value of AD is found by using the Pyhagorean Theorem:
[tex]AD = \sqrt{CD^{2}+AC^{2}}[/tex]
[tex]AD = \sqrt{CD^{2}+4\cdot AB^{2}}[/tex]
[tex]AD^{2} - 4\cdot AB^{2} = CD^{2}[/tex]
Besides, BD is measured in terms of the Pythagorean Theorem:
[tex]BD = \sqrt{CD^{2}+AB^{2}}[/tex]
[tex]BD^{2} - AB^{2} = CD^{2}[/tex]
By Algebra:
[tex]AD^{2}-4\cdot AB^{2} = BD^{2} - AB^{2}[/tex]
[tex]AD^{2} = BD^{2}+3\cdot AB^{2}[/tex]
[tex]AD = \sqrt{BD^{2}+3\cdot AB^{2}}[/tex]
[tex]AD = \sqrt{(13\,cm)^{2}+3\cdot (5\,cm)^{2}}[/tex]
[tex]AD \approx 15.6\,cm[/tex]
Answer:
15.6 cm
Step-by-step explanation:
Given that AB = 5 cm, then BC = 5 cm, and AC = AB+BC = 10 cm
Applying Pythagorean theorem to triangle BCD:
BD² = BC² + CD²
CD = √(BD² - BC²)
CD = √(13² - 5²) = 12 cm
Applying Pythagorean theorem to triangle ACD:
AD² = AC² + CD²
AD = √(AC² + CD²)
AD = √(10² + 12²) = 15.6 cm