Respuesta :
Step-by-step explanation:
For the first one, factor using difference of squares.
g² − 64h⁶ = (g − 8h³) (g + 8h³)
For the second one, factor out the greatest common factor, then factor the difference of squares.
k⁴ − 25k² = k² (k² − 25) = k² (k − 5) (k + 5)
For the third one, factor using AC method.
5×-18 = -90.
Factors of -90 that add up to +9 are -6 and +15.
Divide by 5 and reduce: -6/5, 15/5 = 3/1.
5r² + 9r − 18 = (5r − 6) (r + 3)
Answer:
(g - 8h³)(g + 8h³)
k²(k- 5)(k + 5)
(r + 3)(5r - 6)
Step-by-step explanation:
g^2 - 64h^6
g² - (8h³)²
(g - 8h³)(g + 8h³)
k^4 - 25k^2
k²(k² - 25)
k²(k² - 5²)
k²(k- 5)(k + 5)
5r^2 + 9r - 18
5r² + 15r - 6r - 18
5r(r + 3) - 6(r + 3)
(r + 3)(5r - 6)