Respuesta :

Answer:

5.33.

Step-by-step explanation:

A1 = 4 and r = 1/4.

The sum of n terms of a G. S, is:

Sn = a1 * (1 - r^n) / (1 - r)

So substituting, we have:

S10 = 4 * [1 - (1/4) ^10] /( 1 - 1/4)

= 5.33

Answer:

5.33

Step-by-step explanation:

The n th term of a geometric series is

[tex]a_{n}[/tex] = a[tex](r)^{n-1}[/tex]

where a is the first term and r the common ratio

4[tex](\frac{1}{4}) ^{n-1}[/tex] ← is the n th term of a geometric series

with a = 4 and r = [tex]\frac{1}{4}[/tex]

The sum to n terms of a geometric series is

[tex]S_{n}[/tex] = [tex]\frac{a(1-r^{n}) }{1-r}[/tex], thus

[tex]S_{10}[/tex] = [tex]\frac{4(1-\frac{1}{4} ^{10}) }{1-\frac{1}{4} }[/tex]

     = [tex]\frac{4(1-\frac{1}{1048576}) }{\frac{3}{4} }[/tex]

     = [tex]\frac{16}{3}[/tex] ( [tex]\frac{1048575}{1048576}[/tex] )

     = [tex]\frac{16}{3}[/tex] × 0.9999....

     = 5.33 ( to the nearest hundredth )