Answer:
[tex]25.47[/tex]
Step-by-step explanation:
This root can be rewritten as:
[tex]\sqrt{\frac{6487209}{10000} }[/tex]
[tex]\sqrt{\frac{6487209}{100^{2}} }[/tex]
[tex]\frac{1}{100}\cdot \sqrt{6487209}[/tex]
Since 6487209 is a multple of 3, the expression can be rearranged as follows:
[tex]\frac{1}{100}\cdot \sqrt{3\times 2162403}[/tex]
2162403 is also a multiple of 3, then:
[tex]\frac{1}{100}\cdot \sqrt{3^{2}\times 720801}[/tex]
[tex]\frac{3}{100}\cdot \sqrt{720801}[/tex]
720801 is a multiple of 3, then:
[tex]\frac{3}{100}\cdot \sqrt{3\times 240267}[/tex]
240267 is a multiple of 3, then:
[tex]\frac{3}{100}\times \sqrt{3^{2}\times 80089}[/tex]
[tex]\frac{9}{100}\cdot \sqrt{80089}[/tex]
80089 is a multiple of 283, then:
[tex]\frac{9}{100}\cdot \sqrt{283^{2}}[/tex]
[tex]\frac{9\times 283}{100}[/tex]
[tex]\frac{2547}{100}[/tex]
[tex]25.47[/tex]