Respuesta :

Answer:

[tex]25.47[/tex]

Step-by-step explanation:

This root can be rewritten as:

[tex]\sqrt{\frac{6487209}{10000} }[/tex]

[tex]\sqrt{\frac{6487209}{100^{2}} }[/tex]

[tex]\frac{1}{100}\cdot \sqrt{6487209}[/tex]

Since 6487209 is a multple of 3, the expression can be rearranged as follows:

[tex]\frac{1}{100}\cdot \sqrt{3\times 2162403}[/tex]

2162403 is also a multiple of 3, then:

[tex]\frac{1}{100}\cdot \sqrt{3^{2}\times 720801}[/tex]

[tex]\frac{3}{100}\cdot \sqrt{720801}[/tex]

720801 is a multiple of 3, then:

[tex]\frac{3}{100}\cdot \sqrt{3\times 240267}[/tex]

240267 is a multiple of 3, then:

[tex]\frac{3}{100}\times \sqrt{3^{2}\times 80089}[/tex]

[tex]\frac{9}{100}\cdot \sqrt{80089}[/tex]

80089 is a multiple of 283, then:

[tex]\frac{9}{100}\cdot \sqrt{283^{2}}[/tex]

[tex]\frac{9\times 283}{100}[/tex]

[tex]\frac{2547}{100}[/tex]

[tex]25.47[/tex]