Respuesta :

Space

Answer:

[tex]\displaystyle x > 10[/tex]

General Formulas and Concepts:
Algebra I

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

Terms/Coefficients

Step-by-step explanation:

Step 1: Define

Identify given.

[tex]\displaystyle \frac{4}{5}x - 2 > \frac{3}{10} 2x[/tex]

Step 2: Solve for x

  1. Simplify:
    [tex]\displaystyle \frac{4}{5}x - 2 > \frac{3}{5}x[/tex]
  2. [Subtraction Property of Equality] Subtract x term on both sides:
    [tex]\displaystyle \frac{1}{5}x - 2 > 0[/tex]
  3. [Addition Property of Equality] Add 2 on both sides:
    [tex]\displaystyle \frac{1}{5}x > 2[/tex]
  4. [Multiplication Property of Equality] Multiply 5 on both sides:
    [tex]\displaystyle x > 10[/tex]

∴ any number x greater than 10 would work as a solution.

---
Topic: Algebra I