Respuesta :
2π/T = 2π/10 = π/5
y(x) = A sin (wx) = 0.75 sin (πx/5)
y(4) = 0.75 sin (4π/5) = 0.4408389392... ≈ 0.441
y(x) = A sin (wx) = 0.75 sin (πx/5)
y(4) = 0.75 sin (4π/5) = 0.4408389392... ≈ 0.441
Answer:
y(4) = -0.606
Explanation:
Given that,
The amplitude of cosine function, A = 0.75
Time period, T = 10
The cosine function is given by :
[tex]y=A\ cos(\omega t)[/tex]
Since, [tex]\omega=\dfrac{2\pi}{T}[/tex]
[tex]y=A\ cos(\dfrac{2\pi}{T}t)[/tex]
[tex]y=0.75\ cos(\dfrac{2\pi}{10}t)[/tex]
We need to find y (4). Put t = 4 in above equation as :
[tex]y(4)=0.75\ cos(\dfrac{2\pi}{10}\times 4)[/tex]
y(4) = -0.606
Hence, this is the required solution.