Respuesta :
Answer:r=10 cm
Step-by-step explanation:
Given
Height of Cone [tex]h=32\ cm[/tex]
Volume [tex]V=3351\ cm^3[/tex]
and Volume of cone [tex]V=\frac{1}{3}\pi r^2h[/tex]
[tex]\Rightarrow 3351=\frac{1}{3}\pi (r)^2\times 32[/tex]
[tex]\Rightarrow \pi r^2=\frac{10,053}{32}[/tex]
[tex]\Rightarrow r^2=\frac{314.156}{3.142}[/tex]
[tex]\Rightarrow r=\sqrt{99.986}[/tex]
[tex]\Rightarrow r=9.99\approx 10\ cm[/tex]
Answer:
Radius = 5.77231 cm
Step-by-step explanation:
Volume of Cone Vc = [tex]\pi r^2 (h/3)[/tex] ;
where h = height of cone, r = radius, [tex]\pi[/tex] = 22/7
Given : Vc = 32 , h = 32 , r = ?
As per formula :- 3351 = (22/7) (r^2) (32)
r^2 = (3351 x 7) / (32 x 22)
r^2 = 33.3196
r = √33.3196 = 5.77231