Respuesta :
Answer:
The perimeter of a rhombus is 52 cm.
=> length of side: L = 52/4 = 13 cm
Applying Pythagorean theorem for a particular right triangle inside rhombus, we have:
diagonal_2 = 2 x sqrt(side^2 - (diagonal_1/2)^2)
= 2 x sqrt(13^2 - (24/2)^2)
= 2 x 5 = 10 (cm)
=> Solution : 10 cm
Hope this helps!
:)
Answer:
10 cm
Step-by-step explanation:
Each side = 52/2 = 13
Angle 1: X
24² = 13² + 13² - 2(13)(13)cosX
X = 134.7602701
Angle 2: 180 - X = 45.2397299
Diagonal² = 13² + 13² - 2(13)(13)cos(180-X)
Diagonal² = 100
Diagonal = 10