Pls help mee!!! A diameter of a circle has endpoints p(-10, -2) and q(4, 6)
a. Find the center of the circle
b. Find the radius. If your answer is not an integer, express it in radical form
c. Write an equation for the circle

Respuesta :

Answer:

A diameter of a circle has endpoints p(-10, -2) and q(4, 6).

a,  The center of circle is the midpoint of diameter:

O = ((px + qx)/2, (py + qy)/2) = ((-10 + 4)/2, (-2 + 6)/2) = (-3, 2)

b, Radius = Oq

                = sqrt((Ox - qx)^2 + (Oy - qy)^2)

                = sqrt((-3 - 4)^2 + (2 - 6)^2)

                = sqrt(7^2 + 4^2)

                = sqrt(65)

Hope this helps!

:)

Answer:

A) (-3,2)

B) sqrt(65)

C) (x + 3)² + (y - 2)² = 65

Step-by-step explanation:

Centre: midpoint of the diameter

(-10+4)/2, (-2+6)/2

(-3,2)

Radius = diameter/2

sqrt[(6--2)² + (4--10)²]/2

sqrt(65)

Equation:

(x - -3)² + (y - 2)² = (sqrt(65))²

(x + 3)² + (y - 2)² = 65