Respuesta :

Answer:

2x^2 + 1 = 5x

<=>

2x^2 - 5x + 1 =0

b= -5

Discriminant b^2 - 4ac = 5^2 -4 x 2 x 1 = 25 - 8 = 17

=> Option C and D are correct.

Hope this helps!

:)

Answer:

[tex]x=\frac{5+\sqrt{17}}{4}\,\,\,and\,\,\,x=\frac{5-\sqrt{17}}{4}[/tex]

which agrees with the last two options in the list of possible answers

(mark both)

Step-by-step explanation:

We start by re-writing the quadratic equation in standard form:

[tex]2x^2-5x+1=0[/tex]

Which can be solved by using the quadratic formula for a quadratic [tex](ax^2+bx+c=0)[/tex]

with parameters:

[tex]a=2,\,\,b=-5,\,\,and\,\,c=1[/tex]

[tex]x=\frac{5+-\sqrt{25-4(2)(1)} }{2*2} \\x=\frac{5+-\sqrt{17}}{4}[/tex]

Therefore the two values are:

[tex]x=\frac{5+\sqrt{17}}{4}\,\,\,and\,\,\,x=\frac{5-\sqrt{17}}{4}[/tex]