Respuesta :
Answer:
The final transformed function becomes:
[tex]f(x)=-3\,|x-2|+4[/tex]
Step-by-step explanation:
The first transformation (vertically stretched by a factor of 3) means we multiply by 3 the original function:
[tex]f(x)= 3\,|x|[/tex]
second transformation (shifted left 2 units) means we add 2 units to "x":
[tex]f(x)=3\,|x+2|[/tex]
third transformation (shifted down 4 units) implies that we subtract 4 units to the full functional expression:
[tex]f(x)=3\,|x+2|-4[/tex]
fourth transformation (reflected over the x-axis) implies that we multiply the full functional expression by "-1":
[tex]f(x)=(-1)\,(3\,|x+2|-4)\\f(x)=-3\,|x-2|+4[/tex]
Step-by-step explanation:
Step 1: Add the vertical stretch
[tex]f(x) = |x|[/tex]
[tex]f(x) = 3|x|[/tex]
Step 2: Shift it to the left 2 units
[tex]f(x) = 3|x|[/tex]
[tex]f(x) = 3|x + 2|[/tex]
Step 3: Shift it down 4 units
[tex]f(x) = 3|x + 2|[/tex]
[tex]f(x) = 3|x + 2| - 4[/tex]
Step 4: Reflect it across the x-axis
[tex]f(x) = 3|x + 2| - 4[/tex]
[tex]f(x) = -3|x + 2| - 4[/tex]
Answer: [tex]f(x) = -3|x + 2| - 4[/tex]