Respuesta :
Answer:
see below
Step-by-step explanation:
y = 3x^2 - 5x,
y = 2x^2 - x - c,
Set the two equations equal
3x^2 - 5x, = 2x^2 - x - c
Subtract 2x^2 from each side
x^2 -5x = -x-c
Add x to each side
x^2 -4x = -c
Add c to each side
x^2 -4x +c = 0
We can use the discriminant
b^2 -4ac to determine the value for c
a = 1 b = -4 c = c
b^2 - 4ac = 0 means one solution
(-4)^2 - 4(1)c =0
16 -4c = 0
16 = 4c
c=4 is where the is one solution
x^2 -4x-4=0
Factor
(x-2)^2 =0
x=2
y = 3(2)^2 -5(2) = 12 -10 = 2
(2,2) is the solution
When will it have more than one solution
b^2-4ac> 0
(-4)^2 - 4(1)c>0
16 - 4c>0
-4c > -16
Divide each side by -4, remembering to flip the inequality
c< 4
x = -b ± sqrt( b^2-4ac)
---------------------------
2a
y = 3x^2 - 5x
When will it have no solution
b^2-4ac< 0
(-4)^2 - 4(1)c<0
16 -4c<0
-4c<-16
Divide by -4 remembering to flip the inequality
c > 4
no solutions