Respuesta :

Answer:

[tex] A_1 = \frac{\pi r^2}{2} = \frac{\pi (20m)^2}{2}= 200 \pi m^2[/tex]

For the rectangular shape we have:

[tex] A_2= 60 m* 40 m= 2400 m^2[/tex]

[tex] A_3 = \frac{\pi r^2}{2} = \frac{\pi (20m)^2}{2}= 200 \pi m^2[/tex]

And the total area would be:

[tex] A_T = A_1 +A_2 +A_3[/tex]

Replacing we got:

[tex] A_T = 200 \pi +2400 +200 \pi = 2400 +400 \pi m^2= 3656.637 m^2[/tex]

Step-by-step explanation:

For this case using the figure attached we can separate the total area in 3 parts.

For this case [tex] A_1 = A_3[/tex] and represent the area for a semicircle and the A2 represent the area for a rectangular figure.

We can find the individual areas like this:

[tex] A_1 = \frac{\pi r^2}{2} = \frac{\pi (20m)^2}{2}= 200 \pi m^2[/tex]

For the rectangular shape we have:

[tex] A_2= 60 m* 40 m= 2400 m^2[/tex]

[tex] A_3 = \frac{\pi r^2}{2} = \frac{\pi (20m)^2}{2}= 200 \pi m^2[/tex]

And the total area would be:

[tex] A_T = A_1 +A_2 +A_3[/tex]

Replacing we got:

[tex] A_T = 200 \pi +2400 +200 \pi = 2400 +400 \pi m^2= 3656.637 m^2[/tex]

Ver imagen dfbustos