Respuesta :

Answer:

  x=-3

Step-by-step explanation:

Step  1  :

Rearrange this Absolute Value Equation

Absolute value equalitiy entered

     |2x+6| = 2x+6  

Step  2  :

Clear the Absolute Value Bars

Clear the absolute-value bars by splitting the equation into its two cases, one for the Positive case and the other for the Negative case.

The Absolute Value term is |2x+6|

For the Negative case we'll use -(2x+6)  

For the Positive case we'll use (2x+6)  

Step  3  :

Solve the Negative Case

     -(2x+6) = 2x+6  

    Multiply

     -2x-6 = 2x+6  

    Rearrange and Add up

     -4x = 12  

    Divide both sides by 4

     -x = 3  

    Multiply both sides by (-1)

     x = -3  

    Which is the solution for the Negative Case

Step  4  :

Solve the Positive Case

     (2x+6) = 2x+6  

    Rearrange and Add up

     0x = 0  

    False, No solution for the Positive Case

Step  5  :

Wrap up the solution

When an absolute value equation has just one solution, that solution has to be checked:

Check the negative case solution

The equality is  |2x+6| = 2x+6  

The solution is  x = -3  

We check the solution by plugging it for x

|2(-3)+6| = 2(-3)+6  

The left hand side is equal to   (0)  

The right hand side is equal to   (0)  

The two sides are equal!

Solution checks!

x=-3

Hope this helps