The complete statements are:
- The area of the base of the prism is equal to the area of the base of the pyramid which can be determined by multiplying half the base and the height
- To find the volume of the triangular prism, multiply the area of the base by 4
- To find the volume of the triangular pyramid, multiply the area of the base by 1/3 of 7
- The volume of the paperweight is approximately 79.17 cubic inches
Start by calculating the area of the base of the pyramid using:
[tex]A_1 = \frac 12 \times base \times height[/tex]
So, we have:
[tex]A_1 = \frac 12 \times 5 \times 5[/tex]
[tex]A_1 = 12.5[/tex]
The volume of the triangular prism is then calculated using:
[tex]V_1 = A_1 \times h[/tex] --- i.e. the product of area and height (4)
So, we have:
[tex]V_1 = 12.5 \times 4[/tex]
[tex]V_1 = 50[/tex]
The volume of the triangular pyramid is then calculated using:
[tex]V_2 = \frac 13 \times A_1 \times h_2[/tex] --- i.e. the product of 1/3 of the area and height (7)
So, we have:
[tex]V_2 = \frac 13 \times 12.5 \times 7[/tex]
[tex]V_2 = 29.17[/tex]
The total volume of the shape is then as:
[tex]V = V_1 + V_2[/tex]
[tex]V = 50 + 29.17[/tex]
[tex]V = 79.17[/tex]
Hence, the volume of the paperweight is approximately 79.17 cubic inches
Read more about volume at:
https://brainly.com/question/15899703