Answer:
[tex]\frac{1}{6}+\frac{3}{17}=\frac{35}{102}[/tex]
So your answer is
[tex]=\frac{35}{102}[/tex]
Step-by-step explanation:
[tex]\mathrm{Least\:Common\:Multiplier\:of\:}6,\:17:\quad 102\\\mathrm{The\:LCM\:of\:}a,\:b\mathrm{\:is\:the\:smallest\:positive\:number\:that\:is\:divisible\:by\:both\:}a\mathrm{\:and\:}b\\\mathrm{Prime\:factorization\:of\:}6:\quad 2\cdot \:3\\Adjust\:Fractions\:based\:on\:the\:LCM\\=\frac{17}{102}+\frac{18}{102}\\\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}:\quad \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}\\=\frac{17+18}{102}\\\mathrm{Add\:the\:numbers:}\:17+18=35\\[/tex]
[tex]=\frac{35}{102}[/tex]