Respuesta :

I'll teach you how to factor 6x^2y − 3xy − 24xy^2 + 12y^2

---------------------------------------------------------------------

6x^2y − 3xy − 24xy^2 + 12y^2

Apply exponent rule:

6x^2y-3xy-24xyy+12yy

Rewrite 12 as 4*3

Rewrite -24 as 8*3

Rewrite 6 as 2*3

2*3x^2y-3xy+8*3xyy+4*3yy

Factor out common term 3y:

3y(2x^2-x-8xy+4y)

Factor 2x^2-x-8xy+4y:

3y(2x-1)(x-4y)

Your Answer Is 3y(2x-1)(x-4y)

plz mark me as brainliest if this helped :)

The factor of 6x²y − 3xy − 24xy² + 12y² is 3y(2x - 1)(x - 4y)

Given:

6x²y − 3xy − 24xy² + 12y²

find the highest common factor of all the coefficient of each term

6 = 1, 2, 3, 6

6 = 1, 2, 3, 63 = 1, 3

6 = 1, 2, 3, 63 = 1, 324 = 1, 2, 3, 4, 6, 8, 12, 24

6 = 1, 2, 3, 63 = 1, 324 = 1, 2, 3, 4, 6, 8, 12, 2412 = 1, 2, 3, 4, 6, 8, 12

The highest common factor of all the coefficient of each term is 3

So,

6x²y − 3xy − 24xy² + 12y²

= 3y(2x² - x - 8xy + 4y)

  • (2x² - x - 8xy + 4y) can also be factorised further

(2x² - x - 8xy + 4y) = (2x - 1)(x - 4y)

Therefore,

6x²y − 3xy − 24xy² + 12y = 3y(2x - 1)(x - 4y)

Read more:

https://brainly.com/question/16504783