Respuesta :
I'll teach you how to factor 6x^2y − 3xy − 24xy^2 + 12y^2
---------------------------------------------------------------------
6x^2y − 3xy − 24xy^2 + 12y^2
Apply exponent rule:
6x^2y-3xy-24xyy+12yy
Rewrite 12 as 4*3
Rewrite -24 as 8*3
Rewrite 6 as 2*3
2*3x^2y-3xy+8*3xyy+4*3yy
Factor out common term 3y:
3y(2x^2-x-8xy+4y)
Factor 2x^2-x-8xy+4y:
3y(2x-1)(x-4y)
Your Answer Is 3y(2x-1)(x-4y)
plz mark me as brainliest if this helped :)
The factor of 6x²y − 3xy − 24xy² + 12y² is 3y(2x - 1)(x - 4y)
Given:
6x²y − 3xy − 24xy² + 12y²
find the highest common factor of all the coefficient of each term
6 = 1, 2, 3, 6
6 = 1, 2, 3, 63 = 1, 3
6 = 1, 2, 3, 63 = 1, 324 = 1, 2, 3, 4, 6, 8, 12, 24
6 = 1, 2, 3, 63 = 1, 324 = 1, 2, 3, 4, 6, 8, 12, 2412 = 1, 2, 3, 4, 6, 8, 12
The highest common factor of all the coefficient of each term is 3
So,
6x²y − 3xy − 24xy² + 12y²
= 3y(2x² - x - 8xy + 4y)
- (2x² - x - 8xy + 4y) can also be factorised further
(2x² - x - 8xy + 4y) = (2x - 1)(x - 4y)
Therefore,
6x²y − 3xy − 24xy² + 12y = 3y(2x - 1)(x - 4y)
Read more:
https://brainly.com/question/16504783