306636
contestada

What is the following sum?

What is the following sum?

RootIndex 3 StartRoot 125 x Superscript 10 Baseline y Superscript 13 Baseline EndRoot + RootIndex 3 StartRoot 27 x Superscript 10 Baseline y Superscript 13 Baseline EndRoot
8 x cubed y Superscript 4 Baseline (RootIndex 3 StartRoot x y EndRoot)
15 x Superscript 6 Baseline y Superscript 8 Baseline (RootIndex 3 StartRoot x y EndRoot)
15 x cubed y Superscript 4 Baseline (RootIndex 3 StartRoot x y EndRoot)
8 x Superscript 6 Baseline y Superscript 8 Baseline (RootIndex 3 StartRoot x y EndRoot)

Respuesta :

Answer:

your answer is 8x^3 y^4(cube root xy)

Step-by-step explanation:

on edge 2020

The sum can be evaluated using the rules of indices to simplify the terms.

  • The sum [tex]\mathbf{\sqrt[3]{125 \cdot x^{10}\cdot y^{13}} + \sqrt[3]{27 \cdot x^{10} \cdot y^{13}}}[/tex] = [tex]\underline{8\cdot x^{3 } \cdot y^{4 } \cdot \sqrt[3]{x\cdot y}}[/tex]

Reasons:

The given sum is presented as follows;

[tex]\mathbf{\sqrt[3]{125 \cdot x^{10}\cdot y^{13}} + \sqrt[3]{27 \cdot x^{10} \cdot y^{13}}}[/tex]

Simplifying gives;

[tex]\sqrt[3]{5^3\cdot x^{3 \times 3} \cdot x\cdot y^{3 \times 4}\cdot y} + \sqrt[3]{3^3\cdot x^{3 \times 3} \cdot x\cdot y^{3 \times 4}\cdot y}[/tex]

[tex]\mathbf{\sqrt[3]{(5\cdot x^{3 } \cdot y^{4 })^3 \cdot x\cdot y} + \sqrt[3]{(3\cdot x^{3 } \cdot y^{4 })^3 \cdot x\cdot y}}[/tex]

  • [tex](5\cdot x^{3 } \cdot y^{4 }) \cdot \sqrt[3]{x\cdot y} + (3\cdot x^{3 } \cdot y^{4 })\cdot \sqrt[3]{x\cdot y}[/tex]

Factorizing gives;

  • [tex](5\cdot x^{3 } \cdot y^{4 }) \cdot \sqrt[3]{x\cdot y} + (3\cdot x^{3 } \cdot y^{4 })\cdot \sqrt[3]{x\cdot y} = \sqrt[3]{x\cdot y} \cdot \left((5\cdot x^{3 } \cdot y^{4 }) \cdot + (3\cdot x^{3 } \cdot y^{4 }) \right)[/tex]

  • [tex]\sqrt[3]{x\cdot y} \cdot \left((5\cdot x^{3 } \cdot y^{4 }) \cdot + (3\cdot x^{3 } \cdot y^{4 }) \right) = \mathbf{ \sqrt[3]{x\cdot y} \cdot 8\cdot x^{3 } \cdot y^{4 } = 8\cdot x^{3 } \cdot y^{4 } \cdot \sqrt[3]{x\cdot y}}[/tex]

Which gives;

  • [tex]\underline{\mathbf{\sqrt[3]{125 \cdot x^{10}\cdot y^{13}} + \sqrt[3]{27 \cdot x^{10} \cdot y^{13}}} = 8\cdot x^{3 } \cdot y^{4 } \cdot \sqrt[3]{x\cdot y}}[/tex]

The correct option is therefore;

[tex]\underline{ \mathbf{8\cdot x^{3 } \cdot y^{4 } \cdot \sqrt[3]{x\cdot y}}}[/tex] which can be expressed as follows;

  • 8 x cubed y superscript 4 Baseline(RootIndex 3 StartRoot x y EndRoot)

Learn more about rules of indices here:

https://brainly.com/question/10290723