1. Let f(x) = x + 3 and g(x) = 3x + 5. Find f(g(4)) - g(f(4)) 2. Let f(x) = 5x^2 - 5. What is f(f(x))? 3. Let f(g(x)) = 3x + 3 and f(x) = x + 6. If g(x) = ax + b, compute a + b. 4. Let f(x) = 2x - 3 and g(f(x)) = 5 - 4x. Find g(4)

Respuesta :

Answer:

1. f(g(4)) - g(f(4)) = -6

2. f(f(x)) = 125x^4 - 250x^2 + 120

3. a + b = 0

4. g(4) = -9

Step-by-step explanation:

1.

First we need to find f(4) and g(4):

f(4) = 4 + 3 = 7

g(4) = 3*4 + 5 = 17

Then, we find g(f(4)) = g(7):

g(7) = 3*7 + 5 = 26

And we find f(g(4)) = f(17):

f(17) = 17 + 3 = 20

so f(g(4)) - g(f(4)) = 20 - 26 = -6

2.

To find f(f(x)), we use the value of f(x) for every x in f(x):

f(f(x)) = 5*(f(x))^2 - 5 = 5*(5x^2 - 5)^2 - 5 = 5*(25x^4 - 50x^2 + 25) - 5

f(f(x)) = 125x^4 - 250x^2 + 120

3.

To find f(g(x)), we use the value of g(x) for every x in f(x):

f(g(x)) = g(x) + 6 = ax + b + 6 = 3x + 3

ax + (b+6) = 3x + 3 -> a = 3 and b = -3

a + b = 3 - 3 = 0

4.

If we assume g(x) = ax + b, we have:

g(f(x)) = a*(2x - 3) + b = 2ax - 3a + b = 5 - 4x

2a = -4 -> a = -2

-3a + b = 5

6 + b = 5 -> b = -1

g(x) = -2x - 1

g(4) = -2*4 - 1 = -9