Answer:
(a) a = (2i + 4.5j) m/s^2
(b) r = ro + vot + (1/2)at^2
Explanation:
(a) The acceleration of the particle is given by:
[tex]\vec{a}=\frac{\vec{v}-\vec{v_o}}{t}\\\\[/tex]
vo: initial velocity = (3.00i -2.00j) m/s
v: final velocity = (9.00i + 7.00j) m/s
t = 3s
by replacing the values of the vectors and time you obtain:
[tex]\vec{a}=\frac{1}{3s}[(9.00-3.00)\hat{i}+(7.00-(-2.00))\hat{j}]\\\\\vec{a}=(2\hat{i}+4.5\hat{j})m/s^2[/tex]
(b) The position vector is given by:
[tex]\vec{r}=\vec{r_o}+\vec{v_o}t+\frac{1}{2}\vec{a}t^2[/tex]
where vo = (3.00i -2.00j) m/s and a = (2.00i + 4.50j)m/s^2