What is the following quotient? StartFraction StartRoot 6 EndRoot + StartRoot 11 EndRoot Over StartRoot 5 EndRoot + StartRoot 3 EndRoot EndFraction StartFraction StartRoot 30 EndRoot + 3 StartRoot 2 EndRoot + StartRoot 55 EndRoot + StartRoot 33 EndRoot Over 8 EndFraction StartFraction StartRoot 30 EndRoot minus 3 StartRoot 2 EndRoot + StartRoot 55 EndRoot minus StartRoot 33 EndRoot Over 2 EndFraction Seventeen-eighths Negative five-halves

Respuesta :

Answer:

StartFraction StartRoot 30 EndRoot minus 3 StartRoot 2 EndRoot + StartRoot 55 EndRoot minus StartRoot 33 EndRoot Over 2

Step-by-step explanation:

Given the surdic equation as shown [tex]\frac{\sqrt{6}+\sqrt{11} }{\sqrt{5}+\sqrt{3} }\\[/tex]

To find the quotient, we will rationalize by multipying both numerator and denominator of the function by the conjugate of the denominator.

Given the denominator [tex]\sqrt{5}+\sqrt{3}[/tex], its conjugate will be [tex]\sqrt{5}-\sqrt{3}[/tex]

Multiplying through by [tex]\sqrt{5}-\sqrt{3}[/tex], we have;

[tex]= \frac{\sqrt{6}+\sqrt{11} }{\sqrt{5}+\sqrt{3} } * \frac{\sqrt{5}-\sqrt{3} }{\sqrt{5}-\sqrt{3} }\\[/tex]

[tex]= \frac{\sqrt{30}- \sqrt{18}+\sqrt{55}-\sqrt{33}}{2}\\= \frac{\sqrt{30}- \sqrt{9*2}+\sqrt{55}-\sqrt{33}}{2}\\= \frac{\sqrt{30}- 3\sqrt{2}+\sqrt{55}-\sqrt{33}}{2}[/tex]

The final expression gives the requires answer

Answer: B. square root 30- 3 root 2 plus square root 55- square root 33/ 2

Step-by-step explanation:

its right