Respuesta :

Answer:

[tex] x = 18°\\

\angle A = 73°[/tex]

Step-by-step explanation:

By interior angle property on one side of the transversal.

[tex] \angle A+ \angle B = 180°\\

6x - 35° + 3x + 53° = 180°\\

9x + 18° = 180°\\

9x = 180° - 18°\\

9x = 162°\\

x = \frac{162°}{9}\\

\huge \red {\boxed {x = 18°}} \\

\therefore \angle A = 6x - 35°\\

\therefore \angle A = 6\times 18°- 35°\\

\therefore \angle A = 108°- 35°\\

\huge \purple {\boxed{\therefore \angle A = 73°}} \\[/tex]