Respuesta :

Answer:

Angle between the forces​ [tex]= 82.82[/tex] degrees

Explanation:

The resultant force value [tex]= 1.5[/tex]  times of Force F

[tex]|R| = |F1| = |F2| =|F|[/tex]

Where R is the resultant force

[tex]R^2 = A^2 + B^2 + 2AB cos X\\(1.5F)^2 = F^2 + F^2 + 2F^2 cos X\\2.25F^2 = 2F^2 + 2F^2 cos X\\[/tex]

Cos X is the angle between the two forces.

On further simplifying the equation we get

[tex]2.25F^2 = 2F^2(1 + cos X)[/tex]

[tex](1 + cos X) = \frac{2.25F^2}{2F^2} \\(1 + cos X) = \frac{2.25}{2} \\(1 + cos X) = 1.125\\cos X = 1.125 - 1\\Cos X = 0.125\\X = Cos^{-1}0.125\\[/tex]

[tex]X = 82.82[/tex] degrees

Angle between the forces​ [tex]= 82.82[/tex] degrees

Answer:

The angle between the two forces will be "120°".

Explanation:

Given,

The resultant of force = 1.5F

Now,

By using formula for two resultant of two equal forces, we get

[tex]R^2=A^2+B^2+2ABCos\theta[/tex]

On putting the values, we get

⇒  [tex]1.5^2=1.5^2+1.5^2+2(1.5)(1.5)Cos\theta[/tex]

⇒  [tex]2.25=2.25+2.25+4.5Cos\theta[/tex]

⇒  [tex]2.25=4.5+4.5Cos\theta[/tex]

⇒  [tex]4.5Cos\theta=2.25-4.5[/tex]

⇒  [tex]4.5Cos\theta=-2.25[/tex]

⇒  [tex]Cos\theta=\frac{-2.25}{4.5}[/tex]

⇒  [tex]Cos\theta=-\frac{1}{2}[/tex]

⇒  [tex]\theta=120^{\circ}[/tex]