The first term of an arithmetic sequence is 3. The common difference of the sequence is 1.5 times the first term. Write the next three terms of the
sequence​

Respuesta :

Answer:

4.5, 6.75, 10.125

Step-by-step explanation:

You just keep multiplying.

An arithmetic sequence is characterized by a common difference

The next three terms are 7.5, 12 and 16.5

The given parameters are:

[tex]\mathbf{a = 3}[/tex] --- the first term

[tex]\mathbf{d = 1.5a}[/tex] -- the common difference

[tex]\mathbf{d = 1.5(3) = 4.5}[/tex]

The nth term of an arithmetic sequence is:

[tex]\mathbf{T_n = a + (n - 1)d}[/tex]

So, we have:

[tex]\mathbf{T_2 = 3 + (2 - 1) \times 4.5 =7.5}[/tex]

[tex]\mathbf{T_3 = 3 + (3 - 1) \times 4.5 =12}[/tex]

[tex]\mathbf{T_4 = 3 + (4 - 1) \times 4.5 =16.5}[/tex]

Hence, the next three terms are 7.5, 12 and 16.5

Read more about arithmetic sequence at:

https://brainly.com/question/18109692