Respuesta :

Answer:

i³ = - i

Step-by-step explanation:

Explanation:-

Step(i):-

Given     [tex]i = \sqrt{-1}[/tex]

we know that  cos π = -1

                        sin π = 0

now given data

we can write  [tex]i = \sqrt{cos\pi + i sin\pi }[/tex]

                      [tex]i =( {cos\pi + i sin\pi })^{\frac{1}{2} }[/tex]

step(ii):-

In complex numbers nth roots of a complex number

Z = r(cosθ+i sinθ)

[tex]Z^{\frac{n}{2} } = r^{\frac{n}{2} } (cos\pi +isin\pi )^{\frac{n}{2} }[/tex]

[tex]Z^{\frac{n}{2} } = r^{\frac{n}{2} } (cosn\pi/2 }+isinn\pi/2 )[/tex]

Step(iii):-

   now       [tex]i =( {cos\frac{\pi }{2} + i sin\frac{\pi }{2} }) }[/tex]

                [tex]i^{3} =( {cos\frac{\pi }{2} + i sin\frac{\pi }{2} })^{3} }[/tex]

                [tex]i^{3} =( {cos\frac{3\pi }{2} + i sin\frac{3\pi }{2} })}[/tex]

By using trigonometric  

              [tex]cos\frac{3\pi }{2} = cos (\pi +\frac{\pi }{2} ) = -cos\frac{\pi }{2} =0[/tex]

              [tex]sin\frac{3\pi }{2} = sin (\pi +\frac{\pi }{2} ) = -sin\frac{\pi }{2} = -1[/tex]

             [tex]i^{3} =( 0+ i (-1) ) = -i[/tex]

Final answer:-

i³ = - i

                                                                                       

 

Ver imagen belgrad
Ver imagen belgrad

Answer:

D) -i

Step-by-step explanation: