Respuesta :
Answer:
- 128 Superscript StartFraction 3 Over x EndFraction
- (4RootIndex 3 StartRoot 2 EndRoot)x
- (4 (2 Superscript one-third Baseline) ) Superscript x
Step-by-step explanation:
Given the indicinal equation [tex](\sqrt[3]{128} )^{x}\\[/tex]
According to one of the law of indices,
[tex](\sqrt[a]{m} )^{b}\\= (\sqrt{m})^\frac{b}{a}[/tex]
Applying this law to the question;
[tex](\sqrt[3]{128} )^{x}\\ = {128} ^\frac{x}{3}\\ \\= (\sqrt[3]{64*2})^{x} \\ = (4\sqrt[3]{2})^{x} \\= (4(2^{1/3} )^{x} )[/tex]
The following are therefore true based on the following calculation
128 Superscript StartFraction 3 Over x EndFraction
(4RootIndex 3 StartRoot 2 EndRoot)x
(4 (2 Superscript one-third Baseline) ) Superscript x
Answer:
Options B, C, and D on edgenui.ty
Step-by-step explanation:
See the work down above ^^^