Answer:7 L and 3 L
Step-by-step explanation:
Given
Solution [tex]1[/tex] Â has [tex]30\%[/tex] sulphuric acid by volume
Solution [tex]2\ \text{has}\ 50\%[/tex] sulphuric acid by volume
final solution is [tex]10\ L[/tex] of [tex]36\%[/tex] sulphuric acid
Suppose there is [tex]V_1\ L[/tex] and [tex]V_2\ L[/tex] of sulphuric acid of solution [tex]1[/tex] and [tex]2[/tex] respectively
So, quantity of acid before and after remains same
[tex]0.3\times V_1+0.5\times V_2=0.36\times 10[/tex]
[tex]3V_1+5V_2=36\quad \ldots(i)[/tex]
and total mixture before and after remains same i.e.
[tex]V_1+V_2=10\quad \ldots(ii)[/tex]
Solving [tex](i)[/tex]  and  [tex](ii)[/tex] we get
So we get [tex]V_1=7\ L[/tex] and [tex]V_2=3\ L[/tex]
So, 7 liters from solution 1 and 3 liters from solution 2