Answer:
D. [tex]\frac{3}{8} \pi[/tex]
Step-by-step explanation:
The area of a circular sector is defined as
[tex]A=\frac{\pi r^{2} \theta}{360\°}[/tex]
Where [tex]\theta[/tex] is the central angle and [tex]r[/tex] is the radius of the circle.
Replacing given values, we have
[tex]48 \pi = \frac{\pi (16)^{2} \theta}{360\°}\\ 17,280=256\theta\\\theta = \frac{17,280}{256} =67\frac{1}{2}=\frac{135}{2}[/tex]
But, this angle is in degrees, we know that [tex]\pi = 180\°[/tex]
[tex](\frac{135}{2})\° \times \frac{\pi}{180\°} =0.375 \pi=\frac{3}{8} \pi[/tex]
Therefore, the right answer is D.