Respuesta :
Answer:
(B) cot Theta
Step-by-step explanation:
We want to simplify the expression:
[tex]\dfrac{cot\theta cos\theta}{sin\theta } X\dfrac{tan\theta}{\frac{sin\theta}{cos\theta tan \theta} }[/tex]
Now:
[tex]\dfrac{ cos\theta}{sin\theta } =cot\theta\\\dfrac{ sin\theta}{cos\theta }=tan \theta\\$Substituting these into the expression\\\dfrac{cot\theta cos\theta}{sin\theta } X\dfrac{tan\theta}{\frac{sin\theta}{cos\theta tan \theta} }=cot\theta cot\theta X\dfrac{tan\theta}{\frac{tan\theta}{ tan \theta} }\\=cot\theta cot\theta X tan\theta$ (Since cot\theta X tan\theta =1) \\$Therefore our result:\\=cot\theta[/tex]