Respuesta :

Answer:

[tex]\sum _{n=1}^{\infty }\:\frac{n}{\left(n^2+1\right)^2}[/tex]converges

Step-by-step explanation:

Ver imagen Аноним
Ver imagen Аноним

Answer:

Convergent

Step-by-step explanation:

∑₁°° n / (n² + 1)²

Applying integral test:

∫₁°° x / (x² + 1)² dx

If u = x² + 1, then du = 2x dx, or ½ du = x dx.

When x = 1, u = 2.  When x = ∞, u = ∞.

½ ∫₂°° 1 / u² du

½ (-1 / u) |₂°°

½ (-1 / ∞) − ½ (-1 / 2)

0 + ¼

¼

The integral converges, so the series also converges.