Respuesta :
Answer:
a) the trigonometric function is;
[tex]y = 7.5 sin ( \frac{2 \pi}{365}t + \frac{337 \pi}{730})+ 21.5[/tex]
b) [tex]y = 28.36^0 \ C[/tex] Â Â ( to two decimal places)
Step-by-step explanation:
This data can be represented by the sinusoidal function of the form :
[tex]\mathbf{y = A sin (Bt -C)+D}[/tex]
where A = amplitude and which can be determined via the formula:
[tex]A = \dfrac{largest \ temperature - lowest \ temperature}{2}[/tex]
[tex]A = \dfrac{29-14}{2}[/tex]
[tex]A = \dfrac{15}{2}[/tex]
A = 7.5° C
where B = the frequency;
Since the data covers a period of 3 days ; then [tex]\dfrac{2 \pi}{B } =365[/tex]
[tex]B = \dfrac{2 \pi}{365}[/tex] Â ( where 365 is the time period )
The vertical shift is found by the equation D;
D = Â [tex]\frac{largest \ temperature + lowest \ temperature}{2}[/tex]
D = [tex]\frac{29+14}{2}[/tex]
D = 21.5
Replacing the values of A ; B and D into the above sinusoidal function; we have :
[tex]y = 7.5 sin (\frac{2 \pi}{365}t -C) + 21.5[/tex]
From the question; when it is 7th of the year ( i.e January 7);
t =  7 and the temperature (y) = 29° C
replacing that too into the above equation; we have:
[tex]29= 7.5 sin (\frac{2 \pi}{365}*7 -C) + 21.5[/tex]
[tex]29= 7.5 sin (\frac{14 \pi}{365} -C) + 21.5[/tex]
[tex]\frac{29-21.5}{7.5}= sin (\frac{14 \pi}{365} -C)[/tex]
[tex]1= sin (\frac{14 \pi}{365} -C)[/tex]
[tex]sin^{-1}(1)= (\frac{14 \pi}{365} -C)[/tex]
[tex]\frac{\pi}{2}= (\frac{14 \pi}{365} -C)[/tex]
[tex]C= (\frac{14 \pi}{365} -\frac{\pi}{2})[/tex]
[tex]C= (\frac{28 \pi- 365 \pi}{730} )[/tex]
[tex]C= \frac{-337 \pi}{730}[/tex]
Thus; the trigonometric function is;
[tex]y = 7.5 sin ( \frac{2 \pi}{365}t + \frac{337 \pi}{730})+ 21.5[/tex]
Similarly; to determine the temperature o Jan 31; i.e when t= 31 ; we have :
[tex]y = 7.5 sin ( \frac{2 \pi}{365}*31+ \frac{337 \pi}{730})+ 21.5[/tex]
[tex]y = 7.5 sin ( \frac{62 \pi}{365}+ \frac{337 \pi}{730})+ 21.5[/tex]
[tex]y = 7.5 sin ( \frac{124 \pi+ 337 \pi }{730})+ 21.5[/tex]
[tex]y = 7.5 sin ( \frac{461 \pi }{730})+ 21.5[/tex]
[tex]y = 7.5 *( 0.915)+ 21.5[/tex]
[tex]y = 6.8689+ 21.5[/tex]
[tex]y = 28.36^0 \ C[/tex] Â Â ( to two decimal places)
Answer:
7.5cos(2[tex]\pi[/tex]/365(t-7))+21.5
b) 28.37
Step-by-step explanation: